Code No.: 14366 N/O

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. (E.E.E.) IV-Semester Main & Backlog Examinations, July/August-2023 Power Systems-II

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

Q. No.	Stem of the question		M	L	CO	PC
1.	List the applications of power circle diagrams.				1	1,2
2.	What is meant by propagation constant?				1	1,2
3.	What is the importance of slad	ck bus in load flow study?	2	4	2	1,2
4.	Write the advantages of per un	nit system.	2	2	2	1,2
5.	Why single line to ground fault current is more than the 3 phase symmetrical fault-current generator terminals?				3	1,2
6.	Define short circuit capacity of		2	1	3	1,2
7.	Draw the zero sequence network of a transformer when its primary and secondary are connected in $\Delta - \Delta$ configuration.				4	1,2
8.	Write the boundary conditions	2	2	4	1,2	
9.	Mention the specifications of a travelling wave.			1	5	1,2
10.	Define reflection co-efficient	2	1	5	1,2	
	Part-B	$(5\times8 = 40 Marks)$				
11. a)	What is nominal circuit? Find ABCD constants for a nominal-T circuit of a transmission line?				1	1,2
b)	A 3 phase, 50Hz, 132 KV transmission line consists of conductors of 1.17 cm dia and spaced equilaterally at a distance of 3 meters. The line conductors have smooth surface with value for m=0.96. The barometric pressure is 72cm of Hg and temperature of 20 C ⁰ . Determine the fair and foul weather corona loss per km per phase.			3	1	1,2
12. a)	Explain the Gauss seidel load flow solution method in steps.		4	1	2	1,2
b)	The parameters of a 4-bus system are as under:		4	3	2	1,2
	Bus code Line admittance	Charging admittance	4.50			-,-
	1-2 $0.2 + j 0.8$	0.0				
	2-3 $0.3+j0.9$	0.0				
	2-4 0.25 +j 1.0	0.0				
	3-4 $0.2+j0.8$	0.0				
	1-3 $0.1 + j0.4$	0.0				

Code No.: 14366 N/O

13. a)	A synchronous generator and a synchronous motor each rated 25 MVA, 11 KV having 15% sub – transient reactance are connected through transformers and a line as shown in fig. The Transformers are rated 25 MVA, 11/66 KV and 66/11 KV with leakage reactance of 10% each. The line has a reactance of 10% on a base of 25 MVA, 66 KV. The motor is drawing 15 MW at 0.5 power factor leading at a terminal voltage of 10.6 KV. When a symmetrical three phase fault occurs at the motor terminals at point A. Find the sub – transient current in the generator, Motor and Fault.	4	3	3	1,2
= *	T ₁ T ₂				
b)	Write the procedure to calculate the fault current for a 3 phase fault in alternator using Thevenin's theorem.	4	2	3	1,2
14. ει)	A star connected resistive load is connected across a balanced three phase supply of 415V, R_1 = 20 Ohm, R_2 = 250 Ohm, R_3 = 15 Ohm. Calculate symmetrical components of line currents.	4	3	4	1,2
t)	Derive the equivalent circuit and necessary equations for an LL fault in transmission lines.	4	2	4	1,2
15. a)	Discuss the behavior of a travelling wave when it reaches the end of (i) open circuited (ii) short circuited transmission line. Derive the reflection and refraction coefficients of voltage and current wave forms.	4	2	5	1,2
b)	A 300 kV surge travels on a cable with a surge impedance 30 ohm towards its junction with an overhead line which has a surge impedance of 450 ohm. Find (i)Transmitted Voltage ii) Transmitted Current iii) Reflected Voltage	4	3	5	1,2
	(iv) Reflected current				
16. a)	A single phase 11 KV transmission line with a length of 15 Km is to deliver 500 KVA. The inductive reactance of the line is 0.5 ohm/Km and resistance is 0.3 ohm/Km. Calculate the efficiency and regulation of line for 0.8 lagging P.F.		3	1	1,2
b)	Compare Newton Raphson and Fast decoupled load flow methods.	4	2	2	1,2
17.	Answer any two of the following:				
a)	Explain the necessary steps to develop a Z bus.	4	1	3	1,2
b)	A single line to earth fault occurs on a feeder. The sequence impedances upto fault point are $0.3+j0.6$, $0.3+j0.55$ and $1+j0.78$ pu. The fault resistance is 0.66 pu. If voltage is $1 - 0^0$. Fir d fault current and voltage of faulty phase at fault point.		3	4	1,2
c)	Write short notes on Bewley lattice diagram.	4	2	5	1,2

M: Marks;	L: Bloom's Taxonomy Level;		CO; Course Outcome;	PO: Programme Outcome		
	i)	Blooms Tax	conomy Level - 1	20%		
	ii)	Blooms Tax	conomy Level – 2	40%		
	iii)	Blooms Tax	conomy Level – 3 & 4	40%		